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In recent years, advances in science, technology, and the way in which we view our world have led to an 
increasingly broad use of the term “intelligence”. As we learn more about biological systems, we find more 
and more examples of complex and precise adaptive behavior in animals and plants. Similarly, as we build 
more complex computational systems, we recognize the emergence of highly sophisticated structures capable of 
solving increasingly complex problems. These behaviors show characteristics in common with the sort of complex 
behaviors and learning capabilities we find in humans, and therefore it is common to see them referred to as 
“intelligent”. These analogies are problematic as the term intelligence is inextricably associated with human-like 
capabilities. While these issues have been discussed by leading researchers of AI and renowned psychologists 
and biologists highlighting the commonalities and differences between AI and biological intelligence, there 
have been few rigorous attempts to create an interdisciplinary approach to the modern problem of intelligence. 
This article proposes a comparative framework to discuss what we call “purposeful behavior”, a characteristic 
shared by systems capable of gathering and processing information from their surroundings and modifying their 
actions in order to fulfill a series of implicit or explicit goals. Our aim is twofold: on the one hand, the term 
purposeful behavior allows us to describe the behavior of these systems without using the term “intelligence”, 
avoiding the comparison with human capabilities. On the other hand, we hope that our framework encourages 
interdisciplinary discussion to help advance our understanding of the relationships among different systems and 
their capabilities.
1. Introduction

Since ancient times, the mind and its function have been a subject of 
great interest to philosophers, scientists, and intellectuals of all kinds. 
Throughout history, the way we think about intelligence and reason 
has changed several times as new schools of philosophy develop, our 
knowledge about the world increases, and technology advances. For 
most of the time, the definitions and discourse about intelligence have 
had humans at its center, and logically so, since humans are the most 
intelligent systems we know. Much effort has been dedicated in the 
field of psychology to the dissection of human intelligence as well as 
the creation of models, tests, and scales of measurement that can help 
us understand its workings (e.g. [1, 2, 3, 4, 5]). But as science advances, 
there have been several attempts to expand the study of intelligence to 
non-human systems.
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Intelligence has traditionally been considered a biological phe-

nomenon [6]. Novel discoveries about the brain, its structure, and its 
function have led to the recognition that there are no fundamental dif-

ferences between the human brain and that of most of the other animals 
[7]. Although human brains have larger capabilities in many aspects 
when compared to non-human animals, the biological, chemical, and 
physical differences among them are a question of scale and reorgani-

zation of common structures rather than the presence of any unique ele-

ment [8, 9]. In some cases, similarities in aspects of the brain’s function 
hint at deep similarities between phylogenetically distant groups such 
as vertebrates and mollusks [10]. Nowadays, it is commonly accepted 
that non-human animals such as apes [11], corvids like ravens or crows 
[12], odontocetes like sperm or killer whales [13] and even insects [14] 
may possess a certain degree of intelligence and self-awareness.
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Moreover, the fact that so much research and thought into the na-

ture and characteristics of intelligence has been centered on humans has 
led to anthropocentric methods of evaluating intelligence in animals. 
This means, in most cases, that animals are considered intelligent only 
when they show human-like behavior and capabilities, usually related 
to the capability to build and use tools or to the presence of social skills 
[15]. However, intelligent behavior can exist in animals without their 
correspondence in humans. Indeed, some argue that “lower” animals 
such as insects and cephalopods can be considered to have capabilities 
normally associated with more complex organisms, such as conscious-

ness [16] and even self-awareness [17]. In some cases, definitions have 
been broadened enough to encompass vegetal life [18]. Advances in 
the study of complex plant signaling and communication have led to 
the creation of a community of scientists studying “plant neurobiology” 
[19], and the resulting controversial arguments around the term (see 
[20] and responses). This discussion has been recently revitalized with 
the discovery of mycorrhizal networks that exchange information and 
nutrients among trees across entire forests [21].

One of the most outstanding advances in so-called “artificial intel-

ligence” has been AlphaZero, a deep reinforcement learning computer 
program able to teach itself to play Go with little information apart 
from the basic game rules [22]. AlphaZero discovered several known Go 
strategies and invented new clever ones before beating the best human 
Go players. However, despite the impressive capability of the computer 
program, it is limited to a very narrow task, and cannot transfer the 
knowledge from the game and apply it to other contexts. Despite these 
advances, and the discussions around them, artificial intelligence is not 
a well-defined term [23] and although “intelligence” is in its name, it 
is not clear if it should be characterized by using the same concept of 
intelligence used in psychology, biology, or in everyday language [24].

Considering these different ideas and manifestations of intelligence, 
how can we make sense, in a single framework, of animal intelligence, 
plant intelligence, government intelligence agencies, artificial intelli-

gence, smart devices, or even smart cities?

The topic of intelligence has gained great popularity in recent years. 
New discoveries in brain and computer sciences are also starting to 
provide new insights into how the physical and informational substance 
that drives and supports the emergence of intelligence operates [9, 25, 
26, 27, 28, 29, 30, 31, 32].

A large part of the discussion about intelligence is terminological. 
In the case of animal and plant intelligence, as well as in the case of 
artificial intelligence, most of the arguments seem to stem from a ten-

sion between more general and narrow concepts of intelligence. On the 
one hand, there is a concept of intelligence that refers to human-only 
or human-like abilities such as self-awareness or reason, and on the 
other hand, there is a concept of intelligence that refers to more gen-

eral problem-solving capabilities. Notably, the definitions and concepts 
between different fields of research vary greatly, and could present 
problems for interdisciplinary collaborations.

The aim of this article is to propose a general framework that de-

scribes the properties of intelligent-like behavior across different dis-

ciplines. This effort arises from the intuition that no single field of 
study provides a complete interpretation or an appropriate framework 
to make sense of the different manifestations of intelligence and an 
interdisciplinary approach is needed. In this sense, we are taking a per-

spective similar to the general systems theory (GST) founded by Ludwig 
von Bertalanffy [33, 34, 35, 36, 37, 38]. The GST conceptualizes sys-

tems as a set of interrelated and interdependent agents. The rules and 
dynamics of interaction between those agents explain and predict emer-

gent behaviors within the system. Moreover, some of these rules and 
dynamics can be generalized across very different systems such as liv-

ing beings, machines or societies to generate theoretical models that 
can be applicable and useful across different fields. The set of concepts 
and ideas of the GST are broadly applicable, and therefore facilitate 
interdisciplinary communication. Certainly, there is merit in this “big 
picture” perspective. Here, we take a similar approach to study mod-
2

ern perspectives of intelligence. It is important to note that we do not 
aim to solve the deep philosophical problem of the nature of reason 
or intelligence, but to create an abstract, comparative framework that 
captures the commonalities that can be identified in systems that show 
intelligence or intelligent behavior in the broader sense of the term.

In the following section, we provide short overviews of the problem 
of intelligence in each of the authors’ fields of research, and explain why 
our proposed framework could provide a useful contribution for each of 
these fields. In the section “proposal of a novel conceptual framework” 
we describe our general approach to the problem of intelligence. First, 
we propose the term “purposeful behavior” as a stand-in for the concept 
of intelligence in a colloquial, broad sense when applied to non-human 
systems. Second, we describe what we consider to be some common 
characteristics of systems with purposeful behavior, that can be used to 
take comparative approaches to the study of the behavior of non-human 
systems. Finally, in the “discussion” section, we give some closing argu-

ments on why we consider our framework to be a useful contribution 
for multidisciplinary studies about intelligence, and propose some av-

enues for further research.

2. Intelligence from different perspectives

The differences between natural and artificial intelligence are a very 
popular topic in mass/social media. One can find a vast amount of 
material about the perspectives of the leading researchers of AI and 
renowned psychologists highlighting the commonalities and differences 
between AI and human intelligence, and addressing the question of 
whether non-human animals, organisms, or machines can be consid-

ered intelligent. However, in academic environments, there is very little 
thorough treatment of this issue.

Human intelligence has been the subject of much dissection and de-

composition in its main factors [1] and even in this case there is not 
a clear, agreed-upon definition, with concepts such as the 𝑔 factor be-

ing the subject of vigorous debate [9, 39]. Outside of the human realm, 
the definition of the concept of intelligence is even more problematic. 
Several attempts to characterize versatile, adaptive or autonomous be-

havior in non-humans systems has lead to conceptual and semantic 
disagreements [20]. Humans are invariably (and rightfully) used as a 
reference for intelligence, and due to their advanced and specialised 
capabilities, discussions about adaptive or purposeful behavior in other 
systems are invariably compared to and measured against humans [15].

The fact that these discussions exist means that there is interest for a 
rigorous, academic treatment of the concept of complex, adaptive, goal-

oriented behavior in non-human systems. Although some attempts have 
been previously made [23, 40, 41, 42], this problem remains largely 
unaddressed.

Before suggesting our framework, we provide a brief overview of 
what intelligence means in different disciplines that have addressed 
this concept. We focus here on philosophy, computer science and bi-

ology. This selection is arbitrary as certainly there are other disciplines 
that have largely contributed to the dialogue about intelligence, such 
as psychology, neurosciences, biochemistry or education, just to men-

tion a few of them. In order to establish the background that led to the 
creation of the framework, and to better explain the problem that this 
paper is addressing, the next section will introduce the problem from 
the perspective of the disciplines of each author.

2.1. Intelligence from philosophy

Philosophy has a very important role when having an interdisci-

plinary dialogue. It is one of the most abstract disciplines and it can 
help other disciplines that are more concrete to dialogue. This is not to 
say that some disciplines are better than others, in an absolute sense, 
and that philosophy is the best among them. Rather, it is to say that all 
sciences can be placed in a hierarchy of abstraction. Philosophy is one 
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of the most abstract disciplines. Thanks to its more abstract nature, phi-

losophy can put aside accidental elements and focus on the essential. 
Philosophy is not only helpful but necessary to build interdisciplinary 
bridges and help other disciplines that are more concrete to dialogue.

Today, many disciplines use the word “intelligence” in a broad and 
inconsistent way. We have to distinguish between the ordinary use of 
the word “intelligence” and the scientific use. The first is blurry and 
flexible; the second should be rigorously defined. The problem arises 
when the two uses are mixed, and science starts to talk about “intelli-

gence” in an ordinary way.

In philosophy, words are rigorously defined. This is the case with 
“intelligence”, one of the most important topics in philosophy. The ordi-

nary use of the word “intelligence” is very recent. The word was created 
in a philosophical context to talk about a very specific facet of human 
reason. It is important to take a look at what philosophers have said on 
this issue.

Intelligence is an old philosophical topic that has been discussed for 
centuries. As words have history, a good starting point is to discuss the 
etymology of the word, in order to reveal its original meaning when 
first appeared. We also discuss the way in which the meaning of the 
word has changed throughout history.

The Greeks did not have just one word to speak of intelligence. They 
had several. Plato differentiated between two ways of using reason: dis-

cursive reason or dianoia διάνοις and intuitive reason or nous νοῦς or 
νόος [43, 44]. Discursive reason is exercised in the confrontation of 
theses. Thesis A is opposed to thesis B, and concludes with thesis C. 
Plato called it a dialectic exercise. This is the type of reasoning used in 
mathematical proofs and in logic exercises. It is a slow use of reason, 
which makes all the steps explicit before reaching a conclusion. Instead, 
intuitive reason is a quick use of reason. It starts from the premises 
and reaches the conclusion without going through the whole deductive 
process. Intuition is the simplified form of deductive reasoning. Plato 
considered intuitive reason as the highest form of human intelligence. 
He spoke of intuition as a direct contemplation of the truth. These two 
faculties are two ways of using reason. As reason is only human, Plato 
related these two modes to human beings alone.

Aristotle distinguished between three types of souls in the natural 
world [45]. First, the vegetative soul, was typical of plants. Its func-

tions were growth and nutrition. Second, the sensitive soul was typical 
of animals capable of locomotion. Along with the previous functions, 
it was capable of locomotion and sense perception. While some people 
may argue that plants can also “sense”, it has to be clear that Aristotle 
was referring to the ability of receiving information via complex sense 
organs. Third, the intellectual soul corresponded to humans. Along with 
the previous functions, it had the ability to reason [46]. For Aristotle, 
the “soul” was not a spirit that survived the death of the body, as some 
understand it today. “Soul” only meant “anima”: the principle of ani-

mation or the principle of life. Any living being had a soul. Having a 
soul was synonymous with having life. So all organisms in biology have 
a “soul” in Aristotelian terms. In fact, this is the origin of the world 
“animal”: an organism that has an “anima” or soul [46]. Aristotle, like 
Plato and all later Roman and medieval philosophers, only assigned the 
rational soul to human beings. For them, intelligence and reason were 
almost synonymous.

But intelligence and reason are not the same thing as memory, sen-

sory perception and imagination. These faculties fall within Aristotle’s 
sensitive soul. He assigned these abilities to other creatures besides hu-

man beings [45]. This is consistent with recent scientific findings in 
animal memory, imagination and learning skills. But in this case, we 
are no longer speaking of intelligence in the strict sense, which implies 
reason, but about different cognitive abilities that do not imply reason.

It is also important to remember that neither Plato nor Aristotle 
talked about “intelligence”. This was a later word which was derived 
from the Latin “intellegere”. Medieval Latin philosophers translated it as 
“to read inward.” This gives us a first hint: intelligence implies a com-

ponent of abstraction. Human language implies abstraction. Reading is 
3

the visual interpretation of human language. Therefore, reading also 
implies abstraction. To read inward is to use human language in the 
silent place of the inside. The etymology of the word “intelligence” is 
telling us that to be intelligent is to be able to read inward.

The current use of the word “intelligence” Words are social ob-

jects. The meaning of a word is determined by the way it is used within 
a society. Meaning is use [47]. The way we use the word “intelligence” 
today is also changing its meaning and adding something to its history 
[47]. Like all objects, words were created for a specific function, but 
they end up acquiring novel uses.

In today’s world we make a very broad use of the word “intelli-

gence”. We talk about “artificial intelligence”, “smart cars” and “multi-

ple intelligences”. Superficially, we all understand each other. But when 
we perform a deeper analysis, nobody knows exactly what intelligence 
is.

It is difficult to reach a consensus about the definition of intelli-

gence. This partially comes from a confusion between the ordinary use 
of the word “intelligence” and the scientific use. This misunderstanding 
also comes from the fact that biologists define intelligence according 
to biological terms, computer scientists define intelligence from a com-

putational point of view, and so on. The same word is being used in 
different ways, providing multiple meanings and multiple definitions.

The word “intelligence” was created with a strict definition that has 
remained relatively stable throughout the centuries. It also has a broad 
definition that departs from the strict one. Broad definitions exist due to 
the dynamic and flexible nature of human language. The strict defini-

tion is the original one, and the broad definition only exists in relation 
to it, as an analogy. Forgetting this will lead us to a dark and messy 
place.

The strict definition of intelligence Intelligence in the strict sense 
is the ability to know with conscience [48]. Knowing with conscience 
implies awareness. This fully happens in rational acts (human animals) 
and does not fully happen in sensitive acts (non-human animals). In a 
strict sense, we can only speak of human intelligence. In an analogous 
sense, we may still speak of intelligence. However, the ability to know 
with conscience is not possessed by plants or machines.

Computational theories of the mind define intelligence in the strict 
sense as the ability to process information. But the ability to know with 
conscience includes the ability to process information. The act of know-

ing includes information processing, but it is not limited to it. To know 
is not only to process information, but to acquire it with awareness. 
In terms of classical knowledge theory, to know is “to immaterially 
possess the forms of things”. This is a very important idea, which is 
well-established in philosophy [43, 45, 49, 50].

The broad definition of intelligence Intelligence, in a broad sense, 
is the ability to process information. This can be applied to plants, ma-

chines, cells, etc. It does not imply knowledge. Therefore, it does not 
imply consciousness. Plants, computers and cells are capable of pro-

cessing information, but not of acquiring it in a conscious, abstract and 
active way. That is, from the strict definition in philosophy, they do not 
know information.

Therefore, there is a difference between “containing” information 
and “knowing” information [51]:

-To contain information is to possess it passively. Computers and 
DNA contain information, such as bits and nucleotides. Computers do 
not have consciousness, capacity of abstraction nor an epistemologically 
active dimension, and therefore are not capable of knowing informa-

tion. They only contain it. This thesis belongs to a well-established 
tradition of the philosophical theory of knowledge [50, 52, 53].

-To know information implies consciousness, capacity of abstraction 
and an epistemologically active dimension. To know is not a passive 
thing that happens, as if a book was poured into our head. To know 
is something active [54]. Consciousness is an immaterial element (not 
spirituality) that, in a strict way, only occurs in humans. And in an 
analogous way may occur in non-human animals.
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In this broad definition, we have used the word “process” instead 
of “containing” information. Plants, computers and cells not only con-

tain information, but they reproduce it. Thus, processing information 
implies the ability to reproduce it.

It is necessary to keep in mind the strict definition of intelligence, 
versus the broad one. Philosophy can provide some distinctions to cor-

rect the current misuse of the word. It is also important to have an 
overview of the history of the word “intelligence”. As the word “intel-

ligence” is inevitably used by different disciplines, a good idea would 
be to go back to Aristotle’s approach. He identified something common 
to human animals, non-human animals and plants, while distinguishing 
their differences. Aristotle’s ideas would be a good toolbox in order to 
build a broader framework.

2.2. The importance of a general conceptual framework of intelligence 
from the point of view of computer science

The term Artificial intelligence (AI) was coined by John McCarthy 
when he held the first Dartmouth conference in the Summer of 1956. 
At that time Artificial intelligence was understood as “the science and 
engineering of making intelligent machines” [55]. Today AI is an interdis-

ciplinary research field with a broad scope.

Throughout the history of computer science, there have been inten-

sive philosophical and theoretical discussions over whether a computer 
can think or reason [56]. This question still remains a frequent source 
of discussion navigating the frontier between computer science, philos-

ophy, and neuroscience. The impressive results in artificial intelligence 
research during the last years have promoted the revival of the question 
about the definition of intelligence. While the precise definition of the 
word “intelligence” is a subject of intense debate, a recurrent idea in 
the field of computer science is that intelligence refers to the capacity 
of agents (robots, animals, or computer programs) that receive percepts 
from the environment (information in multiple forms such as images, 
sounds, numbers, etc.) which they use to perform actions [57, 58].

Traditionally, the only way to make a computer to perform a task 
was to write down a detailed algorithm indicating what to do in each 
possible situation. Today, machine-learning (ML) algorithms are ca-

pable of doing more abstract operations such as finding patterns and 
making inferences and decisions without instructions or rules explicitly 
programmed. Over the last few years more and more examples have 
been showing that artificial intelligence algorithms are capable of mak-

ing complex decisions in challenging, dynamic environments.

AI and ML have been intensively put into practice in recent years 
with the advent of technological progress [57]. AI technologies are con-

structed by mathematical processes that leverage increasing computing 
power to deliver faster and more accurate models to forecasts or en-

hance representations and combinations from large data sets. Whether 
we realize it or not, artificial intelligence is becoming ubiquitous, play-

ing an active role in our daily lives. AI has even become influential in 
our democracies, as personality traits are highly predictable from algo-

rithms that use social media digital records of human behavior [59], 
and therefore, can be used to influence future behavior. During the last 
years, there has been an attempt to differentiate between artificial gen-

eral intelligence (AGI) or “strong AI” and classical AI or “narrow AI”. 
AGI refers to the creation of systems that carry out “intelligent” behav-

ior in general contexts, while classical or “narrow AI” is more about 
specific contexts such as the program capable of beating the world 
champion of Go or automated vehicles [60].

Human intelligence is what shapes the emergence and adoption of 
artificial intelligence. It is human intelligence that seeks to ask ‘why’ 
and considers ‘what if’ through critical thinking. However, it is still 
hard to comprehensively gain perspective on the potential impact of AI 
in the future. As engineering and technology continue to be challenged 
by complex problems with higher efficiency and accuracy, human ex-

pertise still plays a critical role in designing and utilizing AI technology.
4

Probably the best way to conceptualize the differences in capabil-

ities and scope among different ideas of intelligence is through their 
complementarity rather than a competition. A better understanding of 
intelligence in a broader sense may provide a clearer picture of the ca-

pabilities of AI, and in turn, provide a better idea of their potential 
capabilities and threats in the future. In particular as in the field of AI 
it is usually said that we are at the cusp of a major technological trans-

formation in society [61, 62].

2.3. The need for a framework in biology

Traditional definitions of intelligence are challenging to apply in 
non-human biology. This is because they often refer to human-only 
capabilities, or capabilities at which humans excel. Abstract thought, 
symbolic thinking, and language are good examples [32, 63]. But even 
if we do not call it intelligence, it is obvious that different animals have 
different degrees of cognitive capabilities.

It is not useful for a biologist to classify all non-human organisms as 
“not intelligent”, and it does not make sense based on what we see in 
nature and evolution. If we assume that the evolution of human intel-

ligence followed the rules of any other biological character, then it did 
not just appear out of nowhere. Before human intelligence, there had 
to be slightly-lower-than-human intelligence, and slightly-lower-than-

slightly-lower-than-human intelligence before that, until we reach the 
level of mental capabilities we see in nonhuman primates [64]. Human 
brains are scaled-up primate brains [65], and there is no reason to think 
human cognitive capabilities are substantially different than scaled-up 
primate cognitive capabilities.

A logical solution, then, is a scale, but here anthropocentrism 
presents a real problem beyond simple philosophical disagreements. 
Humans are specialized animals, and our intelligence is, to a certain 
extent, oriented to these specializations, such as language, tool use, 
and social interaction [66]. Tying intelligence to these characteristics 
severely underestimates the range of niche-appropriate behaviors and 
strategies that can be accomplished with the full range of bodies and 
nervous systems that exist in nature [15]. Each animal, and even each 
living organism, possesses its own Umwelt [67], however simple, and 
needs tools to survive given a physical body and an external environ-

ment. These tools include cognitive capabilities that generate and guide 
adaptive behavior. Therefore, in order to build a useful scale, we need 
to find the commonalities between what drives niche-appropriate be-

haviors.

In this regard, a bottom-up approach (evolutionarily speaking) could 
be useful. Instead of taking humans and seeing what other animals 
lack, it is possible to start from very simple organisms and consider 
what they have been adding to their bodies and nervous systems in or-

der to improve their behavior in the face of a changing environment. 
Here, the old essay title turned adage for biologists: “Nothing in Bi-

ology Makes Sense Except in the Light of Evolution” [68] makes a lot 
of sense. Metacognition, abstract thought, learning, and other advanced 
processes are not modules that appear suddenly in a complete form, but 
progressions from simpler systems, which may or may not have fulfilled 
similar functions in more ancestral states [8]. The fact that such systems 
are not created de novo during evolution means that understanding their 
evolutionary history can go a long way towards understanding how and 
why it developed the way it did, and give us important insights into its 
function.

Moreover, assuming human intelligence shares a common base with 
animal cognitive abilities, a comparative approach may also be useful in 
order to understand human intelligence by revealing general principles 
of the way in which cognitive abilities appear and develop in different 
animal groups or even non-animal living organisms. It is generally eas-

ier to study such general principles in simpler systems and extrapolate 
to more complex cases than the other way around. This type of ap-

proach has been useful in neuroscience to find common organizational 
principles of neural structures and circuits, as well as evolutionarily 
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conserved or divergent systems [69]. A similar approach could also 
prove useful in the study of the appearance and evolution of different 
cognitive abilities.

An evolutionary, comparative approach necessarily requires a cer-

tain abstraction of the capabilities we are evaluating, since we need to 
be able to speak in similar terms about systems that vary a great deal 
in their nature, complexity, and ecological needs. From the standpoint 
of biology, the framework presented in this paper is an attempt to cre-

ate such an abstraction, a way to speak in similar terms of the cognitive 
or at least behavioral capabilities of a plant, a human, a squid, and a 
diatom. It asks the question of which common problems the brains or 
similar information managing systems throughout the tree of life are 
trying to solve, and tries to create a language to compare the solutions. 
It is very likely that, if used, this framework will, in time, need to change 
and become more complex in order to accommodate the diversity we 
find in nature. However, it is important that this process occurs organi-

cally from a base as minimalistic and unrestricted as possible, and with 
this in mind, the proposed framework is likely to help comparative stud-

ies.

3. Proposal of a novel conceptual framework

As discussed in the previous section, several fields of research may 
benefit from a conceptual framework that facilitates the discussion and 
study of intelligent-like behavior in non-human systems. However, the 
fact that the term “intelligence” in a strict sense is tied to human intel-

lect is a major roadblock. The word “intelligence” causes trouble due to 
semantic arguments around the definition of the word, as well as due 
to specific expectations about intelligent behavior derived from human-

specific capabilities.

To refer to the behavior of such systems while avoiding the connota-

tions of the word “intelligence”, we suggest “purposeful behavior” (PB) 
as a term that can encompass any system that shows behavior that is 
directed towards some sort of goal. Such a goal can be very specific 
(e.g. play chess or drive a car) or more nebulous (stay alive, maintain 
homeostasis). Thus, instead of studying what separates humans from 
other autonomous behaving systems, we attempt to extract some com-

mon characteristics that are shared, to some extent, by systems with 
PB. Such common characteristics become valid dimensions of PB if they 
are shown to be developed to different levels in different systems, and 
to vary independently, as these properties are necessary for them to be 
useful in a comparative context.

The first proposed dimension is access to information. Any PB-

capable system needs to gather information in order to trigger actions 
and make decisions. Note that this can take many forms, such as sensory 
organs, memory, the capability to communicate with other systems or 
listen in on them, etc. We can see this dimension varying when we look 
at different systems. For example, a thermostat would be an example of 
a very simple PB-capable system with very limited access to information 
(a temperature reading), an Arduino (a simple programmable circuit 
board) shows more capabilities in this dimension, as it may have access 
to several inputs. At the high-end of artificial systems we could consider 
DeepDream or self-driving cars, which have access to the Internet and, 
with it, to immense quantities of information.

Biological systems also show different degrees of access to informa-

tion, from very simple unicellular organisms to animals with sensory 
organs of varying number and complexity, or organisms with short-

and long-term memory or the ability to communicate with conspecifics. 
Examples of organisms with very high access to information would be 
killer whales (Orcinus orca), animals with sophisticated senses, com-

plex intraspecific means of communication, and extended parental care. 
Killer whales have also been shown to develop complex hunting tech-

niques and teach them to juveniles, which represents another source of 
information (culture) for these animals. Access to information is neces-

sary in order to be able to conduct PB, and different systems natural and 
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artificial can be compared to each other in their access to information, 
which suggests that this is a valid dimension of PB.

Another characteristic of PB that can be considered is information 
processing, which reflects the ability of a system to filter and transform 
available information, as well as the amount of “floating information” 
or working memory of a given system. Any system capable of PB does 
not simply receive information passively but uses it to produce reac-

tions or make decisions. Therefore, some processing of the received 
information needs to take place at some point. Working memory is, 
in fact, considered a vital component of human intelligence [1]. In this 
case, we can also see that the quantity and speed with which infor-

mation can be processed varies among systems. A thermostat can only 
receive one useful input and transform it into output in a purely reactive 
manner, as do other reactive systems such as simple biological organ-

isms (algae or nematodes for example). More complex systems such as 
semi-autonomous vacuum cleaners and most animals show the ability 
to solve simple problems and make decisions based on the available 
information. At higher levels, we may place animals such as odonto-

cetes, which are able to process multi-sensory information to navigate a 
3D environment effectively and are able to use communication to keep 
track of complex social interactions. Finally, advanced, PB-capable ar-

tificial systems such as computers are able to carry out thousands of 
mathematical operations per second, or to play in a week more games 
of Go than humans have ever played over their whole existence. As in-

formation processing is a necessary characteristic for PB and has a range 
of variation across systems, it can be considered a dimension to be used 
in our comparative framework.

The last characteristic refers to the possible amount of behaviors that 
a system can generate given its structure and its environment. We sug-

gest the name “behavioral space”. Every PB-capable system needs to 
have a behavioral space, otherwise it would be incapable of behavior, 
purposeful or not. There are large variations in the extent of the behav-

ioral spaces of known systems. Behavioral space is generally large in 
biological systems as a result of the way in which they have evolved.

Living beings are usually surrounded by a complex and unpre-

dictable environment. They are embodied systems with many moving 
parts, which considerably enlarges the ways in which they can react to 
their environment or interact with it when compared to artificial sys-

tems. Even the simplest single-celled organism has embedded within 
itself a large number of regulatory pathways to deal with changes in 
external and internal conditions.

More complex organisms also have general heuristics or instinctive 
behaviors that they can use to act in different situations. A hairless ape 
can meet a dog for the first time and activate a stress response, its whole 
body will be prepared to undertake a series of pre-programmed “routi-

nes” such as run, scream at it, or throw rocks at it. But the same hairless 
ape can learn that the dog is friendly, and activate another series of 
routines that activate favorable social interactions. The interaction be-

tween predetermined heuristics, environmental variables, the inherent 
variability of biological organisms, and flexible neural systems is what 
gives rise to innovative and even creative behaviors. Finally, the abil-

ity to manipulate the environment opens up large behavioral spaces, as 
is the case with coleoid cephalopods, corvids, thermites, bees, and pri-

mates. The need for a behavioral space in PB, and the large variability 
we see across systems, makes it a useful dimension to consider in our 
framework.

Artificial systems also have behavioral spaces, but their construction 
tends to be much more deterministic than biological systems. Moreover, 
they tend to be built for specific functions and their behavioral space is 
thus very limited. However, there is also a variation to be seen. At the 
lowest end, we would have a thermostat, which can only undertake a 
single behavior. Operating systems are examples of complex software 
that perform a wide range of tasks and handle the functioning of a ma-

chine that can be used for very different purposes. At the top end of 
the behavioral space in artificial systems we can find creations such 
as self-driving cars, software assistants (e.g. Alexa), and autonomous 
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robots such as the Curiosity Rover. All these systems are designed to 
perform complex, varied tasks in a changing environment, demands 
which remind us of biological systems. A key requirement for the use 
of behavioral space as a comparative variable is that the breadth of be-

haviors is measured in absolute terms. One can argue that, within its 
environment of a Go game, AlphaGo is omnipotent, as the only thing 
that can be done in its little universe is moving Go pieces, and it can 
move them anywhere. However, if we measure behavioral space in ab-

solute terms, it is possible for a crab to interact with a physical Go 
board in the same number of ways that Alpha Go can interact with its 
virtual equivalent. That same crab can also regulate its internal envi-

ronment, capture prey, molt, and dig holes in the sand. Although a crab 
is probably never going to beat a human at Go, due to limitations in its 
processing power and access to information, its behavioral space is still 
vastly larger than the one accessible to AlphaGo.

It is important to emphasize that the three factors described above 
are not completely separate, but a proposed series of specific dimen-

sions for the more general and abstract concept of “purposeful behav-

ior”. Any system that shows purposeful behavior must have at least 
minimum capabilities in all three of these dimensions. For the purposes 
of our framework, we can place the thermostat in the lowest level of 
PB. It has minimum access to information, relying on the readings from 
a single temperature sensor. It has minimum processing power, as it 
can only compare the value it receives with a predetermined value to 
check if it is higher or lower. Finally, its behavioral space is minimum, 
as it can only turn a heating circuit on or off. Thus, a thermostat has 
a low value in all three dimensions, but it has all three. A system that 
lacks one or more of these dimensions cannot, therefore, be considered 
to have PB. A library has access to large quantities of information but 
is unable to do anything with it. A simple calculator can process com-

plex input data into outputs but has no behavioral autonomy at all. Any 
non-robotic multi-tool can be an example of a system with a behavioral 
space but no ability to independently gather or process information.

All of these dimensions will tend to increase together to some extent, 
as increases in one dimension may require increases in another in order 
to be fully effective. Increasing access to information may also require 
an increase in processing power in order to filter the new information 
and determine which is relevant for the goals of the system. In the same 
manner, events that increase behavioral space may require an increase 
in information availability. For example, the evolution of manipulating 
arms in mollusks greatly increased their behavioral space by letting 
them influence their environment in new ways. However, it also led 
to an increase in information, as sensory information from these arms 
was available, and information for arm movement patterns needed to 
be stored. Finally, the new behavioral possibilities and information also 
led to an increase in processing power, which is required to handle the 
new sensory information and manage the new behavioral library.

Moreover, an increase in two or more dimensions at the same time 
may have synergistic effects that give rise to new capabilities. For 
example, information storage is a simple way to increase access to 
information gathered in the past. However, in the presence of high 
information-processing capabilities, that information can be filtered, 
examined, and transformed in order to search for the most relevant el-

ements to the purpose of the system and discard the irrelevant parts. 
Therefore the combination of information processing plus access to 
information allows to learn rather than merely to memorize or store 
information. Information processing also allows to make predictions on 
the basis of past information, which is as close as we can get to ac-

cessing future information. An example of a system with high access to 
information, high processing power, and low behavioral space would 
be computer programs such as AlphaGo, able to use minimum infor-

mation (rules of Go) to generate large quantities of new relevant data 
(games of Go against itself), store features and use them to generate 
purposeful behavior (play Go and hopefully win). AlphaGo, however, 
has limited behavioral space, as its algorithms are designed specifically 
for Go-related inputs and outputs, and would require human modifica-
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tion before being able to perform other tasks. Learning and prediction 
are therefore two examples of features that arise from the increase of 
both access to information and information processing.

Now let us consider the combination of behavioral space plus access 
to information. Systems with low information processing lack proac-

tivity, as they require the ability to anticipate problems and ideate 
solutions, which in turn necessitates an integrated model of their own 
capabilities and the environment, which in turn requires processing 
information. Therefore systems with low information processing tend 
to be only reactive. Although their potential behavioral space may be 
large, their reactions are limited by their access to information. These 
systems need access to information, on the one hand, to detect the sig-

nals that elicit the reactive behavior and, on the other hand, to store 
predetermined reactions or behavioral libraries that can be used in dif-

ferent situations. This behavioral library can be very simple, being a 
simple reflection of the processes of the embodied system (balancing 
of osmotic pressure), or of genetically encoded biochemical pathways 
and neural circuits (stress responses, web-spinning in spiders). A system 
with a large behavioral space and enough information to store responses 
to a large amount of possible environmental cues, and the ability to ac-

cess those cues in a precise and timely manner, should show fine-tuned, 
reflexive, adaptive reactions. Therefore, the simultaneous increase in 
available information and behavioral space favors homeostasis, pre-

programmed adaptive responses to changing situations.

Let us consider an example. A forest-wide mycorrhizal network is 
an example of a system with high levels of access to information and 
high behavioral space. It consists of a large number of trees and plants 
that are interconnected via underground networks of symbiotic fungi 
[21]. They use these networks to exchange carbon, water, and nutrients 
between plants, and it has been shown that larger trees can provide 
saplings with necessary nutrients that improve their viability. In addi-

tion, stress signals can also be exchanged via the network, and insect in-

festation in a single tree can elicit fast (for a plant) defensive behavioral 
responses in nearby and distant members of the network. Ecosystem-

wide mycorrhizal networks, therefore, show fine-tuned reactions to a 
large number of environmental variables thanks to the collective access 
to information of its members, as well as a large combined behavioral 
space that allows for precise self-regulation [70].

The final combination to consider is between the dimensions of be-

havioral space and processing power. A system that has a high value 
in both dimensions not only has a broad range of behaviors, but it also 
has the ability to create new behaviors, or what we could call flexibil-

ity or ingenuity. A system with flexibility goes beyond a simple library 
of reflexive behaviors and reactions, but is to a certain extent aware 
of its capabilities and is able to use them in a creative way. An exam-

ple of a system with high processing power and behavioral space but 
(relatively) low access to information are coleoid cephalopods such as 
cuttlefish or octopuses. Although they have large brains for an inver-

tebrate, their memories are short, and they cannot accumulate much 
information in their short lives. In addition, they are limited to eyesight 
for any long-range information gathering and they are mostly solitary 
animals. However, they are famously adept at using their arms and 
siphons for manipulation in innovative ways, including “playing” with 
objects to explore what they can do with them [71], and they are able 
to use their active camouflage flexibly depending on their current goals 
[72].

Given the nonlinear interaction between our three dimensions, it 
would be expected that the synergistic effects of high scores in all three 
dimensions would drastically increase the capabilities of a given sys-

tem. In this way, systems with high access to information and high 
processing power can create complex models of the world that include 
themselves. Combined with a high behavioral space, they can enact 
complex and precise behaviors both proactively and reactively. They 
are also able to evaluate their own behavioral space and predict the 
outcomes of their behavior and the behavior of others. With the ability 
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Fig. 1. Graphical summary of the proposed framework. Each of the circles rep-

resents the dimensions used to characterize purposeful behavior (PB). Outside 
the circles in bold are labels that indicate the emergent properties of the interac-

tion between each pair of dimensions. Outside the circles in italics are examples 
of objects or systems that can be considered to have an elevated value in each 
dimension but not in the other two, and cannot, therefore, be considered PB-

capable systems.

to make precise predictions about the future comes the ability to plan 
in advance.

An example of a system with high scores in all three dimensions 
would be corvids. Corvids have large brains and sharp senses. They also 
live in complex social groups and show elaborate intraspecific commu-

nication [73]. They show a large array of complex behaviors: they can 
fly, walk, hunt, gather, communicate with conspecifics, and also use 
their beaks for the manipulation of their environment, including the 
use of crude tools [12]. Notably, corvids have episodic memory and 
can imagine the future actions of themselves and others. They create 
food caches and can remember when they should retrieve them based 
on when they created the cache and how perishable the food they put in 
it is [74]. Some species of corvids pilfer the caches of conspecifics, and 
animals of those species know to wait until nobody is looking, hide be-

hind an object when they are in the process of creating a cache, or even 
create decoy caches with stones when another bird is looking. More-

over, cache pilferers were able to project their experience onto other 
animals and were quick to recover and recache their food if they re-

membered another bird watching while they were creating the original 
cache [75].

Our framework, summarized in Fig. 1, is sufficient to explain 
advanced purposeful behavior in systems like the above-mentioned 
corvids, and gives us a tool to compare them to other, different systems 
and discuss what sorts of changes we would expect to see if we increased 
or decreased one or more of these dimensions. What capabilities would 
appear or disappear? What would the minimum requirements for the 
expression of specific capabilities such as episodic memory, the theory 
of the mind, or tool use be? Although one could certainly subdivide our 
proposed dimensions or create more, we find that a minimalistic, ab-

stract framework is more useful to start the discussion and as a base to 
build upon.

4. Discussion

An example of the type of problems that arise when specific concepts 
tied to certain systems and capabilities are “recycled” and applied to 
others is the current controversy in plant science on whether concepts 
such as “intelligence” and “consciousness” are applicable to plants [76, 
77]. Specifically, there is a semantic component on the discussion, as 
terms such as “neurobiology”, “intelligence” and “consciousness”, are 
intrinsically tied to animal and human physiology and capabilities. This 
is a case where an overly broad use of narrow terms leads to confusion, 
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more so when the discussion breaks out of academic circles into the 
general public.

Due to situations such as this one, we consider that there is a need 
for an approach that avoids the issue of applying a concept such as 
“intelligence”, deeply tied to the human mind, to the behavior of non-

human systems. To this end, we propose the term “purposeful behavior” 
as a broader concept that encompasses any behavior that is aimed at 
responding to the environment to fulfill implicit or explicit goals. Ad-

ditionally, this framework can be used to describe and compare the 
behavioral capabilities of diverse non-human systems.

4.1. On humans in this framework

The result of following the logic of our framework to the bitter end 
is that humans are scaled-up crows, as their capabilities, as contem-

plated by our system, are similar. It is possible to speculate that a high 
enough score in our three dimensions would lead to the emergence of 
even more advanced capabilities, as the large amounts of information, 
processing power and behavioral possibilities would lead to the appear-

ance of more and more advanced environmental and internal models of 
the past, present and future. However, these are speculations, and more 
likely to spark unhelpful discussions rather than to facilitate communi-

cation among disciplines.

As mentioned earlier, our framework does not specifically address 
human intelligence nor any other specific intelligence. It is designed 
to compare mostly natural (non-human) and artificial systems with a 
high level of abstraction. As a consequence of its generality, it does not 
possess the specificity to characterize the emergence of human-level 
capabilities such as reason or symbolic thinking.

This is by design, as we intended to characterize a wide range of pur-

poseful behaviors, not necessarily human-level intelligence. However, 
humans do show purposeful behavior, they have access to information, 
they have processing power and they have a behavioral space. All three 
of these dimensions could then be evaluated in humans and compared 
with other systems. For example, using our framework it is possible 
to ask if a forest-wide mycorrhizal network has more or less access to 
information than the average human, or if killer whales have more pro-

cessing power than humans, and where in each dimension would Alexa 
fit in comparison to other systems.

4.2. Purposeful behavior and organizations

Our framework is consistent with the general systems theory (GST), 
founded by Ludwig von Bertalanffy, and further developed by other 
authors such as Ignacio Maturana, William Ross Ashby, and Wolfgang 
Wieser [33, 34, 35, 36, 37, 38]. The set of concepts and ideas of the 
GST are broadly applicable and have an interdisciplinary origin. These 
concepts and ideas attempt to describe, explain, and predict emergent 
behavior in systems formed by interrelated and interdependent agents. 
Under certain conditions and constraints imposed on the systems and 
the way they relate with their environment, they can learn and adapt 
their behavior. Here, we have used those ideas when considering insti-

tutions and human organizations as systems with purposeful behavior. 
Organizations and their capabilities represent a fruitful avenue of appli-

cation and adjustment of this framework. Human organizations can be 
considered systems with purposeful behavior, as they usually operate 
with a series of implicit or explicit missions, values, and goals. These 
goals can range from setting timetables for play and tournaments in a 
chess club, coordinating information campaigns in the case of an activist 
NGO, and gathering information, and evaluating possible opportunities 
and threats to a country in the case of intelligence agencies.

As systems capable of purposeful behavior, organizations can be 
evaluated on the basis of our three dimensions. They are able to ac-

cess information, from perhaps just the names and telephone numbers 
of people involved in a chess club, to the huge volumes of data pro-

cessed by intelligence agencies. There are also radical differences in 
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information processing, which are not always correlated with access to 
information. For example, bureaucratic organizations frequently suffer 
delays as the amount of information they have available grows faster 
than their ability to process it. Finally, like other systems, organizations 
have a behavioral space, which is usually partly affected by the laws 
under which they operate, the restrictiveness of the organization’s poli-

cies, and the centralization or decentralization of its internal structure. 
Behavioral space, as in other systems, can interact with the other two 
dimensions. A good example was in the case of the recent COVID-19 
pandemic, where country-level governments, which are organizations 
with a very large behavioral space, were limited in their ability to ful-

fill their goals due to insufficient access to accurate information about 
the novel coronavirus.

Therefore, in principle, it is possible to apply our framework to hu-

man organizations. In the same way, we can evaluate animal groups 
(schools of fish, flocks of birds), insect collectives (ants colonies), plant 
collectives (mycorrhizal networks), or cell collectives (corvids). The 
main issue is that human organizations are hard to compare to systems 
like a squid or a self-driving car, as their access to information, pro-

cessing capabilities, and behavioral space may be orders of magnitude 
larger. However, it would be possible to use a framework such as the 
one presented for comparative discussions of organizations, and how 
the different structures, equipment, and policies can affect the differ-

ent dimensions of purposeful behavior, and with them their capabilities 
and their success in achieving their goals. On the other hand, discus-

sions about human organizations are interesting in themselves, as their 
capabilities are determined by both biological (human) and technolog-

ical systems working together. Moreover, their goals are determined 
by human design as in the case of artificial systems, but they are also 
shaped by human behavior and therefore may show characteristics of 
organic systems.

5. Conclusion

To better conceptualize the different ways in which the term intel-

ligence is understood today, new ways of thinking about it are needed. 
More examples of smart behavior in machines, animals, or plants may 
not help to make sense of our current use of the word “intelligence”. It 
seems timely to conceive broader ways to conceptualize and talk about 
intelligence, with the purpose of defining a common ground between 
fields and make different ideas about intelligence collaborate and mu-

tually enrich each other.

To a certain extent, our proposal is inspired by the ideas of Aristotle 
and the three types of “souls” or animas [46, 50]. As we have previ-

ously explained, he stated that there is something common to plants, 
non-human animals and human animals: their “soul” or principle of 
movement (anima). However, that “soul” or anima is different in each 
case, and represents different levels of behavioral complexity. Aristo-

tle, like the GST, acknowledged a hierarchy of beings or “systems” that 
have different properties while sharing a common basis. In this sense, 
we are bringing back an old idea, while expanding it to better concep-

tualize “intelligence” and its commonalities among different systems 
while avoiding the semantic and philosophical discussions that arise 
when using the word “intelligence” in an overly broad manner.

While every field is moving towards an increasing sophistication in 
their own understanding of the behavior of their study systems, this ar-

ticle is an attempt to proceed in the opposite direction, “zooming out” 
and increasing the level of abstraction, with the intention of contribut-

ing to the overall endeavor of bridging the gap between the existing 
conceptual understandings of intelligence (in the broadest sense) in dif-

ferent disciplines. We believe that even though there is no universally 
accepted definition nor reliable measures of intelligence, some progress 
can be made, and there is value in at least creating a way in which these 
concepts can be discussed without being dragged down into arguments 
about semantics.
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Referring to “intelligent” behavior in non-human systems may be 
reasonable under a colloquial, broad-sense use of the term, but as the 
strict definitions of intelligence are connected to the capabilities of the 
human mind, this term becomes problematic in an academic environ-

ment. However, in the absence of the term “intelligence”, there is no 
proper way to talk about this set of behaviors across disciplines. In this 
paper, we have proposed the term “purposeful behavior”, and created 
a framework that tries to capture some generalities of these behaviors 
and the capabilities that make them possible.

Our framework was constructed from ideas and discussions found 
in the literature spanning three fields of knowledge where the term 
“intelligence” appears often: philosophy, computer science and biol-

ogy. It hopes to complement existing attempts to integrate different 
ideas about intelligence in the broad sense, and represents a first step in 
finding an approach that can be used across the disciplinary spectrum. 
Our aim is to help people in different fields of knowledge to develop a 
common vocabulary and a set of conceptual tools to study the common-

alities of purposeful behavior in disparate non-human systems such as 
animals, plants or software. A more ambitious goal would be for it to be 
useful for the benefit of the different disciplines, or society in general. 
For instance, it may serve to guide the development of a new assess-

ment of intelligence-like behavior and capabilities in systems designed 
for multiple purposes.

It is our hope that this type of multidisciplinary dialogue will con-

tribute to the development of the conceptual tools that better frame 
basic questions about intelligence in the broad and strict senses, elicit 
conversation about the topic, open minds, and foster new versions of 
this very initial proposal. We especially welcome the possibility of dis-

cussing this framework with specialists from other disciplines interested 
in expanding it to include humans or organizations, as well as exploring 
the possibilities of more complex or specific dimensions that can lead 
to novel avenues of thought and research.
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